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1. Introduction and summary

The idea that the Higgs field(s) may be identified with extra-dimensional component(s) of

gauge fields — gauge-Higgs unification — is of considerable interest for many years [1 – 3],

with more recent emphasis put on the gauge hierarchy problem and stability of the elec-

troweak scale [4 – 6]. For similar number of years it is known [7, 8] that an attrative way to

obtain chiral 4-dimensional fermions is to populate compact extra dimensions with topolog-

ically non-trivial background gauge fields; this can be achieved via flux compactifications.

These two mechanisms, however, appear to be in potential conflict with each other, as

the background gauge fields generically induce large (normal or tachyonic [9]) mass terms

for their perturbations tangent to extra dimensions. As a possible way out it has been

noted [5] that in the case of product compact manifolds, there may occur cancellations

between different contributions to the mass terms, so that some 4-dimensional scalars —

components of multi-dimensional gauge fields — may be light and even massless. Once

their masses are small and tachyonic, either at the tree level or due to radiative correc-

tions, the extra-dimensional components of the gauge field perturbations become indeed

the Higgs field candidates.

In this paper we elaborate on this class of theories. We give a simple characterization

of potentially light 4-dimensional scalar fields in those models with flux compactification

where the geometry of extra dimensions is that of a product of two-dimensional compact

manifolds. With this characterization, the number of potentially light scalar fields, their

tree level masses and wave functions are straightforwardly calculable. We point out that

in some cases, zero values of the tree level masses, rather than being a result of fine-

tuning, occur as a consequence of a discrete symmetry Z2 between the manifolds entering

the product. In those cases the number of massless scalars is necessarily greater than 1.

Once this discrete symmetry is slightly broken at the classical level, the scalars obtain

small tree level masses, half of which are automatically tachyonic, and half are normal.

In fact, the multiplicity of the Higgs field candidates and their positive-m2 partners is a

fairly generic property of the class of models we consider, this feature being of potential
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phenomenological importance. Another generic property, which is common to models of

gauge-Higgs unification in more than 5 dimensions [5, 6, 10, 11] is that the quartic self-

couplings of the light scalars exist already at the tree level, unlike in the simplest versions

of the Hosotani/Scherk-Schwarz mechanism where self-couplings are induced radiatively

and hence are often too low [12 – 15]. We will further comment on phenomenology of our

models towards the end of this paper.

We then proceed by giving concrete examples showing that it is relatively straightfor-

ward to obtain a pattern of the Higgs field and chiral fermion representations resembling

that of the Standard Model. Our first example, however, illustrates one of the obstacles

for utilizing our construction for model building with simple gauge groups. Namely, in

this example, no Yukawa interactions between the Higgs field candidates and massless 4d

fermions are generated at the tree level, and this appears to be a rather general property

of the Z2-invariant backgrounds in models with simple underlying gauge groups. It can be

evaded if the background explicitly breaks the Z2-symmetry.

The second example involves extra U(1) factor in the gauge group of the multi-

dimensional theory and leads to a toy model of leptons. Three left-handed and one right-

handed generations are obtained from a single fermion of the underlying theory, a property

analogous to the multiplication of fermion generations in models with fermion localization

on topological defects with non-minimal topological numbers [16]. To obtain two more

right-handed “leptons” one adds extra fermions into multi-dimensional theory. In this ex-

ample, only one fermion obtains a mass upon electroweak symmetry breaking, which again

illustrates how constrained is the structure of the Yukawa sector.

Our examples have only illustrative nature and by no means pretend to be close to

realistic extensions of the Standard Model, although they contain the correct spectrum

of the standard electroweak theory of leptons. It remains to be understood whether our

construction can be used for successful model-building.

2. Higgs from gauge fields

In this paper we consider 8-dimensional space-time, although the scheme can be generalized

to 10 and higher dimensions. Let us consider the Yang-Mills theory with the action

S = − 1

4g2

∫

d8X
√
−G Tr(FMNFMN ) ,

where G is the determinant of the 8-dimensional metric. The class of models of interest

to us has the 8-dimensional space-time of the product form R4 × M2 × M ′
2, where M2

and M ′
2 are 2-dimensional compact manifolds. The local coordinates on M2 and M ′

2 are

denoted by ym, m = 1, 2 and ym′

, m′ = 1′, 2′. We will often use complex combinations

z = y1 + iy2, z̄ = y1 − iy2 and similarly for z′, z̄′. By an appropriate choice of coordinates

the metrics on M2 and M ′
2 can, locally, be brought to the Gaussian form,

ds2 = ψ2(z, z̄)dzdz̄, ds′2 = ψ′2(z′, z̄′)dz′dz̄′, (2.1)

We will treat M2 and M ′
2 symmetrically: whatever we say about M2 will also be valid for

M ′
2. Henceforth we concentrate on M2.
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The background configuration

F̄mn =
2πn

Ω2
ψ2εmnX (2.2)

solves the Yang-Mills equations on M2. Here ε12 = +1, n is a constant, Ω2 is the volume

of M2 and X is a generator of the gauge group. With appropriate normalization of X,

n takes integer values, so that the flux is quantized. We take the background gauge field

on M ′
2 to be in the same direction X in the Lie algebra; this field is characterized by an

integer n′. All other components of the background gauge field are set equal to zero.

The bilinear part of the action for perturbations becomes

S = − 1

2g2

∫

d8X
√
−G Tr{DMVNDMV N − DMVNDNV M − iF̄MN [VM , VN ]}

where VM are the gauge field fluctuations, so that AM = ĀM + VM , and the covariant

derivative is given by

DMV N = ∇MV N − i[ĀM , V N ]

with ∇M being the standard Riemannian covariant derivative. We are interested in the

components Vm and Vm′ which are tangent to M2 and M ′
2, respectively. These are vector

fields on M2 and M ′
2, respectively, while from the standpoint of R4 they make KK towers

of scalar fields. If some KK modes of Vm and/or Vm′ are light, they become the Higgs field

candidates. Let us see under which conditions this indeed happens.

For the sake of argument, let us assume that Vm and Vm′ decouple from each other;

this assumption will be justified a posteriori. Then it suffices to consider the fields Vm only.

It is convenient to use an orthonormal frame in the tangent space of M2. We denote the

indices in this frame by a, b, . . . = 1, 2; underlining here signifies that the indices refer to the

orthonormal frame. For the metric in the form (2.1), this simply means that V1 = ψ−1V1,

F12 = ψ−2F12, etc. Note that in this notation, the backgorund fields F̄ab and F̄a′b′ are

constants on M2 and M ′
2, see eq. (2.2).

The explicit form of the bilinear action for Va is

S = − 1

2g2

∫

d8X
√
−GTr{∂µVa∂

µV a+DbVaD
bV a+Db′VaD

b′V a−DbVaD
aV b−iF̄ab[Va, Vb]}

(2.3)

In the complex basis in the tangent space one has V− = V1 − iV2 = ψ−1Vz, V+ = (V−)†.

Likewise D− = D1−iD2. For quantities in the complex basis of M ′
2 we will use the notation

V ′
−, D′

−, etc.; as an example, D′
− = D1′ − iD2′ .

By inspection of the expression (2.3) one observes that potentially light modes satisfy

D+V− = D′
+V− = 0 . (2.4)

For such fields the bilinear action simplifies to

S = − 1

2g2

∫

d8X
√
−GTr{∂µV+∂µV− + iV+[F̄ ′

+− − F̄+−, V−]} (2.5)
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The key point is that the masses of the complex fields V± are given by the difference

(F̄ ′
+− − F̄+−). This is precisely the cancellation found in ref. [5]: once the background is

chosen in such a way that this difference is small, the fields obeying (2.4) are light, even

though each of F̄+− and F̄ ′
+− is large. Mass terms for all other KK modes of Vm receive

contributions from the Laplacian acting on V± and therefore for small size M2 and M ′
2

these other modes will have large masses. In this way a finite number of light scalars on

R4 — the Higgs field candidates — will be separated from an infinite number of heavy KK

modes.

Before discussing solutions to eq. (2.4), let us make a few remarks.

1. The fields obeying eq. (2.4) satisfy DaV
a = 0. Due to this property, the light modes

of Vm indeed decouple from the perturbations Vm′ . This justifies the assumption we

made above.

2. As we already pointed out, for the background field configuration given in eq. (2.2),

F+− and F ′
+− are constants on M2 and M ′

2. Therefore, if eq. (2.4) has several

solutions of one and the same X-charge, masses of all these light modes are equal to

each other. Furthermore, if equations

D′
+V ′

− = D+V ′
− = 0 . (2.6)

also have non-trivial solutions of the same X-charge, the light modes of V and V ′

have masses squared equal in absolute value but opposite in sign: if one of them is

tachyonic, another is necessarily normal, and vice versa.

3. If F̄ ′
+− = F̄+−, the Higgs field candidates are massless at the tree level. Equality

between F̄ ′
+− and F̄+− may be either due to fine tuning, or a consequence of a Z2-

symmetry interchanging the two manifolds M2 and M ′
2 and the background fields on

them. In the latter case one has

n = n′ , Ω2 = Ω′
2 .

We think this Z2-protection is a particularly interesting property of the class of

models discussed in this paper. Clearly, in the case of Z2-symmetry, both V− and

V ′
− have massless modes at the classical level. If this symmetry is slightly broken

at the classical level, so that F̄ ′
+− 6= F̄+−, the tree level masses of both V− and V ′

−

are small; the number of light scalars generated in this way is larger than 1. In fact,

we will see in what follows that this Z2-protection mechanism naturally gives rise to

fairly large number of light scalar modes (either massless, or normal and tachyonic in

equal number). Alternatively, one can think of generating the masses for the Higgs

candidates radiatively. We will further discuss this issue at the end of this paper.

4. Like in other gauge-Higgs unification models [5, 6, 10, 11], and unlike in the case

of the Hosotani/Scherk-Schwarz mechanism, quartic interactions of the Higgs can-

didates are present at the tree level. The reason is that solutions of eq. (2.4) have

both V1 and V2 non-zero, and their commutator does not vanish. Thus, the quartic
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Higgs self-coupling λ is generically of order λ ∼ g2
4 , where g4 is the 4-dimensional

gauge coupling. This is not only relevant to phenomenology, but also ensures the self-

consistency of the entire approach. Indeed, there are no topological arguments guar-

anteeing the stability of the background (2.2), so whether or not the 8-dimensional

field configutrations we discuss are stable is a dynamical issue. For low masses of

the candidate Higgs bosons, m2
H ≪ 1/R2, perturbative stability can be analysed

within 4-dimensional low energy theory (KK modes have positive masses squared).

Since the Higgs self-coupling does not vanish, the Higgs vacuum — and hence the

entire 8-dimensional solution — is perturbatively stable. It is clear, though, that we

are dealing with a metastable vacuum. Its decay rate, however, is expected to be

suppressed as exp(−const/g2
4), thus making our models potentially viable.

Let us now proceed to solving eq. (2.4), still in rather general terms. The field V− is a linear

combination of the generators of the gauge algebra with complex (space-time dependent)

coefficients. So, one can view this field as belonging to complexified adjoint representation

of the gauge algebra. In this representation one can choose the basis T i in such a way

that [X,T i] = qiT i, where qi are real, and decompose V− as V− = V i
−T i. Obviously, the

meaning of qi is that it is equal to the X-charge of the corresponding Higgs candidate. We

will omit the superscript i in what follows.

For given X-charge q, the first and the second of eq. (2.4) read

∂z̄V− + (∂z̄ lnψ)V− − iqĀz̄(z, z̄)V− = 0

∂z̄′V− − iqĀz̄′(z
′, z̄′)V− = 0

These first order equations are solved by

V− =
1

ψ(z, z̄)
exp

{

iq

∫

dz̄Āz̄(z, z̄)

}

exp

{

iq

∫

dz̄′Āz̄′(z
′, z̄′)

}

f(z) g(z′) (2.7)

where f and g are holomorphic functions of their arguments. These functions should be

chosen in such a way that V− is normalizable, namely,

∫

d2zψ2V+V− ,

∫

d2z′ψ′2V+V−

are both finite. These conditions restrict the number of permissible solutions.

To proceed further, let us assume that M2 and M ′
2 are Einstein manifolds, i.e., Rmn =

const · gmn. Then the solutions to the Yang-Mills equations on M2 and M ′
2, with the field

strength given by (2.2), are

Am =
n

2
ωmX , Am′ =

n′

2
ωm′X

where ωm = εml∂l ln ψ and ω′
m = εm′l′∂l′ ln ψ′ are the components of spin connections in

M2 and M ′
2, respectively. The solutions (2.7) then take simple form,

V− = ψ
qn

2
−1(z, z̄)ψ′ qn

′

2 f(z)g(z′) .
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The norms on M2 and M ′
2 reduce to

∫

d2zψ2V+V− =

∫

d2zψqn|f |2 (2.8)
∫

d2z′ψ′2V+V− =

∫

d2z′ψ′ 2+qn′ |g|2 (2.9)

Clearly, the number of solutions of finite norms is finite. As we will see momentarily, this

number can be easily counted by making use of the above formulas. We note in passing

that there are no normalizable solutions of zero X-charge q.

The same analysis, with obvious interchange z ↔ z′, etc., applies to the light modes

of V ′
m.

3. Examples

To illustrate the general treatment, let us give simple examples of models leading to the

light scalars with quantum numbers of the Higgs field of the Standard Model. We also

introduce fermions in such a way as to mimic leptons.

3.1 SU(4)

We begin with the gauge group SU(4) and X = diag(1, 1, 0,−2). The background breaks

SU(4) down to SU(2)L×U(1)X ×U(1) in such a way that the complexified adjoint of SU(4)

is decomposed as

15 = 30 + 10 + 10 + 23 + 2−3 + 21 + 2−1 + 12 + 1−2

the subscript here refers to the X-charge. Clearly 21 is the right candidate for the Higgs

doublet, once X is identified with the weak hypercharge,1 Y = X.

Let us take M2 = S2 and M ′
2 = S′2 with the radii a and a′ respectively. The metric

functions are

ψ =
1

1 + |z|2

4a2

, ψ′ =
1

1 + |z′|2

4a′2

It is now straightforward to count the number of light scalars in this setup. Let us take

n > 0 and n′ > 0. Then, according to eqs. (2.8) and (2.9), all light scalars must have

positive hypercharges. Let us specify to doublets of hypercharge q = 1. For convergence

of the integral (2.8), n should be larger than 1. The choice f = zm and g = z′m
′

yields

convergent norms provided that m = 0, 1, . . . (n − 2), and m′ = 0, 1, . . . n′. Thus there are

(n−1)(n′ +1) normailzable solutions in the sector of the gauge fields tangent to M2. Since

the background is invariant under the rotations of the two spheres, the entire spectrum and

the interactions are classified according to irreducible representations2 of SO(3) × SO(3)′

acting on S2 × S′2. The light Higgs belongs to (j = −1 + n/2, j′ = n′/2) representation of

1In our normalization the left-handed lepton doublet has weak hypercharge -1 and the right-handed

electron has weak hypercharge -2.
2The relationship between the holomorphic basis used in this paper and spherical harmonic basis of

ref. [5] can be found in ref. [17].
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this group. Likewise, for n′ > 1 there is (n′ − 1)(n + 1) light modes among the gauge fields

tangent to M ′
2 belonging to (j = n/2, j′ = −1 + n′/2) representation of SO(3) × SO(3)′.

Altogether, there are 2(nn′ − 1) Higgs candidates. When the Z2-symmetry is slightly

broken at the classical level, half of these putative Higgs fields will be tachyonic and the

other half will have positive mass squared, where the absolute value of mass2 is given by

|n/a2 − n′/a′2|.
In the case of Z2-symmetric setup, when n = n′, the number of the light scalars is

either zero (for n, n′ = 0, 1) or at least 6 (for n = n′ = 2). This illustrates the fact that

the Z2-protection mechanism leads to rather large number of light scalar fields descending

from the multi-dimensional gauge field.

Let us now consider fermion zero modes in this example. We start from an 8-

dimensional spinor in the anti-fundamental representation of SU(4), which after symmetry

breaking by the background field is decomposed as 4̄ = 2−1 + 12 + 10. A singlet of hy-

percharge 2 and a doublet have quantum numbers of left-handed positron and left-handed

leptons of the Standard Model. Let us see that there are corresponding zero modes.

The 8-dimensional Dirac equation reads

ΓAEM
A

(

∂M +
1

2
ωM [CD]Σ

[CD] − iĀM

)

χ = 0

where ΓA are 16 × 16 constant Dirac matrices, Σ[CD] = 1
4 [ΓA,ΓB ] are the generators

of SO(1, 7) and ωM [CD] are the components of the spin connection. Let us take the 8-

dimensional spinor χ to be chiral,

iΓ0Γ1 . . . .Γ7χ = +χ (3.1)

The zero mode equations on M2 and M ′
2 reduce to

(∂4 + Γ45∂5)χ +
1

2
[(∂4 + Γ45∂5) ln ψ] (1 + iqnΓ45)χ = 0 (3.2)

(∂6 + Γ67∂7)χ +
1

2
[(∂6 + iΓ67∂7) ln ψ′] (1 + iqn′Γ67)χ = 0 (3.3)

where q is now the fermion hypercharge. Let ǫ = ±1 and ǫ′ = ±1 be eigenvalues of iΓ45

and iΓ67, that is, chiralities on M2 and M ′
2, respectively. Then the solutions to eqs. (3.2)

and (3.3) are

χ =

(

1 +
|z|2
4a2

)

1+ǫqn

2
(

1 +
|z′|2
4a′2

)

1+ǫ
′
qn

′

2

zm
ǫ z′m

′

ǫ′ χm,m′

ǫǫ′ (3.4)

where zǫ = z̄ for ǫ = +1 and zǫ = z for ǫ = −1, while χǫǫ′ is a spinor independent of z, z̄, z′

and z̄′ and satisfying the 4-dimensional chiral Dirac equation. It follows from (3.1) that its

4-dimensional chirality is (−ǫǫ′). We see from (3.4) that zero modes exist for q 6= 0 only, and

that their chiralities ǫ and ǫ′ must be both negative for q > 0 and both positive for q < 0.

In either case, the 4-dimensional chirality is negative. Fermions of positive 8-dimensional

chirality have zero modes which are left-handed from 4-dimensional viewpoint.
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The zero modes have to be normalizable, that is the following integrals have to be

finite,
∫

dzdz̄ψ2χ̄χ ,

∫

dz′dz̄′ψ′2χ̄χ .

This restricts the number of zero modes. In particular, there are nn′ zero modes of hy-

percharge ±1 and 4nn′ zero modes of hypercharge ±2. We see that models considered in

this paper allow for several fermionic generations originating from single multi-dimensional

fermion.

The major problem with this model is that all 4-dimensional fermions have the same 4-

dimensional chirality. Since the original gauge interactions do not involve charge-conjugate

fermions, this means that Yukawa interactions between zero fermion modes and the light

scalars — extra-dimensional components of the gauge field — are absent at least at the

tree level. More generally, fermions of the same sign of hypercharge have the same 4-

dimensional chiralities, which is not the case in the Standard Model. To construct a model

with non-zero Yukawa couplings one has to cure this problem.

3.2 U(3) × U(1)

To obtain fermions of both positive and negative 4-dimensional chiralities and non-

vanishing Yukawa couplings in a Z2-symmetric background, we modify the previous ex-

ample by adding a U(1) factor to the gauge group. To avoid minor but unnecessary

complications, it is convenient to consider U(3) instead of SU(4) of the previous example.

Thus, in our second example the gauge group is U(3)×U(1)X̃ , and X = diag(1, 1, 0) ∈ U(3).

The treatment of light scalar doublets is the same as in the previous example, so

we concentrate on fermions. We choose them to have positive 8-dimensional chirality as

in (3.1) and begin with (3,−1) representation of U(3) ×U(1)X̃ . Upon symmetry breaking

by the background, U(3) × U(1)X̃ → U(2) × U(1)X × U(1)X̃ , it decomposes as

(3,−1) = (2, 1X ,−1X̃) + (1, 0X ,−1X̃) . (3.5)

If one wishes to identify these fermions with left-handed lepton doublets and right-handed

lepton singlets of the Standard Model, one makes the assignment of weak hypercharge

Y = X + 2X̃ . With this assignment, the Higgs doublets still have weak hypercharge

Y = 1. Note, however, that unlike in the Standard Model, the low energy gauge group is

U(2) × U(1)Y × U(1)Ỹ , where Ỹ is the second linear combination of X and X̃.

Now, the trick is to populate the internal manifolds M2 and M ′
2 with both U(1)X

and U(1)X̃ gauge fields. This can still be done in a Z2-symmetric way, with M2 ↔ M ′
2,

F ↔ F ′ and F̃ ↔ −F̃ ′ under the Z2-transformation. Due to this symmetry, the topological

numbers n,n′ of U(1)X and ñ, ñ′ of U(1)X̃ are related as n′ = n, ñ′ = −ñ. The fermion

doublet effectively feels Abelian fields on M2 and M ′
2 with

(qn)D = n − ñ , (qn′)D = n + ñ ,

while for the singlet one has

(qn)S = −ñ , (qn′)S = ñ .
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Clearly, (qn)S and (qn′)S have opposite signs, while the signs of (qn)D and (qn′)D can be

made the same by an appropriate choice of n and ñ. By making use of eq. (3.4) one finds

that in that case the singlet zero modes are right-handed while the doublet ones are left

handed.

Let us further specify to the simplest case

n = 2 , ñ = 1 (3.6)

Then there are 3 left handed zero modes Dm,m′

, with m = 0, m′ = 0, 1, 2 and ǫD = ǫ′D = −1,

where m and m′ are the integers entering (3.4). The singlet has one right-handed zero

mode S0,0 with ǫS = +1, ǫ′S = −1, and the Higgs candidates are V 0, m′

− , m′ = 0, 1, 2 and

V ′m, 0
− , m = 0, 1, 2. The SO(3)× SO(3)′ quantum numbers of these modes are respectively

D: (j = 0, j′ = 1), S: (j = 0, j′ = 0), V : (j = 0, j′ = 1) and V ′: (j = 1, j′ = 0). Upon

integration over S2 × S′2 the term

D̄V−(Γ4 + iΓ5)S

produces a non-zero Yukawa coupling, while the Yukawa coupling with V ′
± is forbidden by

SO(3) × SO(3)′ symmetry. As the Yukawa terms arise from the interactions of fermions

with U(3) gauge fields in the 8-dimensional theory, the Yukawa couplings are of order of

the 4-dimensional gauge coupling. In fact, after integrating over S2 × S′2 and rescaling to

canonically normalized fields one finds that the Yukawa coupling is equal to 2g where g is

the 4-dimensional U(2)-coupling. Note that when the Higgs fields get vacuum expectation

values, only one fermion obtains a mass, simply because there is only one right-handed

fermion coming from (3.5).

One way to obtain a toy model of leptons is to add two fermionic U(3)-singlets with

X̃ = −1, again of positive 8-dimensional chirality. These singlets will form two (1, 0X ,−1X̃)

representations and will have one right-handed zero mode each. Since they do not interact

with U(3) gauge fields, their Yukawa couplings will be zero at the tree level. In this way one

obtains three families with lepton quantum numbers, only one of them having a tree-level

mass after electroweak symmetry breaking.

Clearly, the model discussed here is far from being close to realistic. It does not contain

quarks, its low energy gauge group is U(2) × U(1) × U(1), it has global SO(3) × SO(3)

symmetry3 inherited from the internal manifold S2 × S′ 2, etc. Nevertheless, this model

illustrates that our construction has some features which we think are interesting.

Except for special features mentioned earlier, phenomenology of the class of models we

discuss appears rather similar to other models of gauge-Higgs unification in more than 5

dimensions. Naive dimensional analysis, extended to higher dimensions [18], suggests that

the UV cutoff scale Λ of the 8-dimensional theory is determined by Λ4 ≃ l8g
−2, where g

is the 8-dimensional gauge coupling and l8 = 3! 28 π4 is the 8-dimensional loop factor. In

terms of the size of extra dimensions a one has

Λ ≃ l
1/4
8√

4πg4a
∼ 10

a
.

3This symmetry will be promoted to gauge symmetry when gravitational interactions are included. It

would of course be absent if M2 and M
′

2 had no isometry groups.
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As we already pointed out, the candidate Higgs bosons may obtain tree-level masses (nor-

mal and tachyonic), if the Z2-symmetry is broken explicitly by the background. Otherwise

these masses may come from higher-order operators like l−1
8 TrF 4 and from non-local oper-

ators induced radiatively; neither of these types of contributions to the masses is forbidden

by the Z2-symmetry. The former contributions are estimated as (m2
H)HO ≃ (2π2g2

4)/(l8a
2)

(for n, n′ ∼ 1), while the latter are expected to be somewhat larger, (m2
H)NL ≃ g2

4/(l4a
2)

where l4 = 16π2 is the 4-dimensional loop factor. Thus, our construction belongs to the

class of theories with TeV-scale extra dimensions and fairly low cutoff scale Λ, about 10 TeV

or somewhat higher. It remains to be explored how far one can go in model-building with

this construction.
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G. Cacciapaglia, C. Csáki and S.C. Park, Fully radiative electroweak symmetry breaking,

JHEP 03 (2006) 099 [hep-ph/0510366].

[13] N. Haba, Y. Hosotani, Y. Kawamura and T. Yamashita, Dynamical symmetry breaking in

gauge-higgs unification on orbifold, Phys. Rev. D 70 (2004) 015010 [hep-ph/0401183].

[14] R. Contino, Y. Nomura and A. Pomarol, Higgs as a holographic pseudo-Goldstone boson,

Nucl. Phys. B 671 (2003) 148 [hep-ph/0306259];

K. Agashe, R. Contino and A. Pomarol, The minimal composite Higgs model, Nucl. Phys. B

719 (2005) 165 [hep-ph/0412089];

Y. Hosotani, S. Noda, Y. Sakamura and S. Shimasaki, Gauge-higgs unification and

quark-lepton phenomenology in the warped spacetime, Phys. Rev. D 73 (2006) 096006

[hep-ph/0601241];

N. Haba, S. Matsumoto, N. Okada and T. Yamashita, Effective theoretical approach of

gauge-higgs unification model and its phenomenological applications, JHEP 02 (2006) 073

[hep-ph/0511046];

I. Gogoladze, N. Okada and Q. Shafi, Higgs boson mass from gauge-Higgs unification, Phys.

Lett. B 655 (2007) 257 [arXiv:0705.3035];

G. Panico, M. Serone and A. Wulzer, Electroweak symmetry breaking and precision tests with

a fifth dimension, Nucl. Phys. B 762 (2007) 189 [hep-ph/0605292].

[15] Y. Hosotani, Gauge-higgs unification and LHC/ILC, arXiv:0704.0883.

[16] J.M. Frere, M.V. Libanov and S.V. Troitsky, Three generations on a local vortex in extra

dimensions, Phys. Lett. B 512 (2001) 169 [hep-ph/0012306];

S. Randjbar-Daemi and M. Shaposhnikov, QED from six-dimensional vortex and gauge

anomalies, JHEP 04 (2003) 016 [hep-th/0303247];

– 11 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB513%2C232
http://arxiv.org/abs/hep-ph/0105239
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NJOPF%2C3%2C20
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NJOPF%2C3%2C20
http://arxiv.org/abs/hep-th/0108005
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB214%2C491
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB132%2C56
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB254%2C349
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB254%2C349
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRPLC%2C283%2C303
http://arxiv.org/abs/gr-qc/9805018
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB124%2C345
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD67%2C085012
http://arxiv.org/abs/hep-ph/0210133
http://jhep.sissa.it/stdsearch?paper=02%282004%29049
http://arxiv.org/abs/hep-th/0312267
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB669%2C128
http://arxiv.org/abs/hep-ph/0304220
http://jhep.sissa.it/stdsearch?paper=03%282006%29099
http://arxiv.org/abs/hep-ph/0510366
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD70%2C015010
http://arxiv.org/abs/hep-ph/0401183
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB671%2C148
http://arxiv.org/abs/hep-ph/0306259
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB719%2C165
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB719%2C165
http://arxiv.org/abs/hep-ph/0412089
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD73%2C096006
http://arxiv.org/abs/hep-ph/0601241
http://jhep.sissa.it/stdsearch?paper=02%282006%29073
http://arxiv.org/abs/hep-ph/0511046
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB655%2C257
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB655%2C257
http://arxiv.org/abs/0705.3035
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB762%2C189
http://arxiv.org/abs/hep-ph/0605292
http://arxiv.org/abs/0704.0883
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB512%2C169
http://arxiv.org/abs/hep-ph/0012306
http://jhep.sissa.it/stdsearch?paper=04%282003%29016
http://arxiv.org/abs/hep-th/0303247


J
H
E
P
1
1
(
2
0
0
7
)
0
8
0

J.M. Frere, M.V. Libanov, E.Y. Nugaev and S.V. Troitsky, Fermions in the vortex

background on a sphere, JHEP 06 (2003) 009 [hep-ph/0304117]; Flavour violation with a

single generation, JHEP 03 (2004) 001 [hep-ph/0309014].

[17] D. Karabali, V.P. Nair and S. Randjbar-Daemi, Fuzzy spaces, the M(atrix) model and the

quantum Hall effect, hep-th/0407007.

[18] Z. Chacko, M.A. Luty and E. Ponton, Massive higher-dimensional gauge fields as messengers

of supersymmetry breaking, JHEP 07 (2000) 036 [hep-ph/9909248].

– 12 –

http://jhep.sissa.it/stdsearch?paper=06%282003%29009
http://arxiv.org/abs/hep-ph/0304117
http://jhep.sissa.it/stdsearch?paper=03%282004%29001
http://arxiv.org/abs/hep-ph/0309014
http://arxiv.org/abs/hep-th/0407007
http://jhep.sissa.it/stdsearch?paper=07%282000%29036
http://arxiv.org/abs/hep-ph/9909248

